Course Description Intended Audience Goals of the course Specific objectives Course format Grading Policy General approach
|
MEBI
534 , Autumn 2007 |
|||||||||
Course Overview |
||||||||||
Course
Description Intended
Audience Goals of the course
Specific objectives
Course format Grading Policy
General Approach The first part of the course is devoted to human biology at the macroscopic (organs), and microscopic (tissues and cells) levels, along with an overview of physiology (function) at the macroscopic level. These levels correspond to "classical" human biology, of the type that is traditionally taught in the first year of medical school, and that has existed in some form for several hundred years. The information associated with these levels is primarily descriptive in nature, as was biology itself for most of its existence. Nevertheless, an understanding of the basic organization and functioning of the body at these levels provides a useful framework for placing in context the causal mechanisms being uncovered at the molecular level. Much of current medical practice is concerned with the functioning of the body at these levels. These classical fields are generally known, so there is little new biological research. However, they form the foundation for clinical medicine as well as a framework for relating the new work arising at the molecular level to clinical manifestations of disease. They are therefore a source of much new research in informatics. The second part of the course is devoted to basic concepts of "modern" biology that have sprung up beginning in the mid-20th century, and which now form the bulk of the biological research endeavor. In this case the structural direction is reversed, starting from the atomic and molecular level, moving to macromolecules and cells. These topics start with basic biochemical concepts such as covalent bonds, kinematics, and metabolic pathways, followed by proteins and their multiple functional and structural roles. DNA and its role in protein synthesis is then followed by gene regulation (how protein synthesis is controlled in individual cells) and cell-cell signaling (how cells communicate with each other). An understanding of these topics is fundamental to understanding much of current biomedical research. The next topic considers the application of these basic biological principles to a biomedical research area. Different topics are presented each year, depending on the interests and availability of the instructors. Topics from previous years have been developmental biology, neuroscience. and immunology. For 2007 the topic is developmental biology. The idea is that the previous topics should have prepared the student to delve into these more specialized areas. All the previous topics deal with normal biology. The last topic provides an introduction to pathology: what can go wrong. Specifically we discuss cancer and cancer informatics because cancer is basically a problem with cell signalling. This topic also serves as a lead-in to the next course in this series: MEBI 535, Clinical topics for informaticists. One week is devoted to each topic. The first (Monday) session is generally a lecture, sometimes given by an expert biologist in the field. This lecture, which is augmented by assigned readings, introduces the basic concepts and vocabulary of the field. Many of the readings are chapters in the course textbook, "Essential Cell Biology", by Alberts. For each topic the general concepts are often illustrated with more detailed information about a single structure or system, in order to make the concepts more concrete, and to give a flavor for the way these structures are studied in the full medical first year curriculum. The same structures will be used to illustrate the general concepts for each of the classical topics. In this quarter we will use the lung and occasionally the heart as examples. Therefore, by the end of the week 4 the students will know something about the gross and macroscopic anatomy of the lung, the structure of lung cells, and the physiology of respiration. The integration of such information for a single organ system (in this case the respiratory system) is usually studied in the organ systems courses in the second year of medical school, as a preparation for clinical medicine. Thus, an introduction to the notion of an organ system runs as a separate thread throughout the initial part of the course. The second (Wednesday) session for a given topic is devoted to the informatics issues and research that arise within the given core concepts. At or before the Monday lecture students are given the assignment of thinking about the data and knowledge associated with the given field, as well as the information representation and management issues that therefore arise. They are also given assigned readings that deal with informatics solutions to these problems, and will be expected to turn in on Wed written answers to specific questions about the issues and readings. On Wed selected students (one or more depending on the class enrollment) will give formal presentations that tie together the issues and readings, and the class together will explore issues arising from the presentations and the assigned questions. By the end of the course the students should be able to generalize the methods and knowledge learned from a given field or sub region of the body and apply these methods to most other regions. |
||||||||||
Last
Updated: |
Contact the instructor at: brinkley@u.washington.edu
|